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Revealing corresponding identities of a dedicated individual in several different complex systems is a
common task in many areas, and this task is transferred to a node matching problem among complex networks
in this paper. A feasible node matching algorithm based on network structure is proposed. Through solving
node matching problems on different types of networks by our algorithm, it is revealed that the structure of the
networks under study may significantly influence the final matching results. For example, it is found that higher
matching precision can be obtained on random networks with moderate density of links, and the results on
small-world networks are always better than those on random or regular networks. Moreover, in scale-free
networks, it seems that hub nodes play dominant roles, i.e., better matching results can be expected by
selecting nodes with larger degrees as the revealed matched nodes. These findings will help us design more

efficient node matching algorithm in the future.

DOI: 10.1103/PhysRevE.80.026103

I. INTRODUCTION

In the last decades, more and more complex systems are
modeled by complex networks [1-9], and a series of research
work, from network measuring [10], modeling [11-13], and
dynamic analyzing [14] to network optimizing [15,16], have
been done to study these collected complex network data.
However, most of these researches always focus on just one
target complex network and pay little attention to the inter-
action between different networks, which must be inappro-
priate in such a strongly connected world [17].

Take language networks, for example. Each language has
its network structure by considering its words as nodes and
co-occurrence of words in sentences as links [3]. Naturally,
such a network must not be isolated. In fact, there are thou-
sands of languages in the world today. Furthermore, each of
these languages has its evolution history, that is, there were
also lots of ancient languages in history. These language net-
works interact with each other all the time as their carriers,
i.e., people, move from one place to another and communi-
cate with each other day by day. Another more modern ex-
ample is about communication networks. In the past, people
could only communicate with each other face to face or
through letters. With the advancement of communication
techniques, especially the appearance of the internet, nowa-
days, people can communicate with each other promptly
through more communication tools, e.g., phone, email, blog,
BBS, and so on. Their log data record human interaction and
can be transferred to corresponding communication networks
[5-9]. Obviously, each of these communication networks is
just a part of the global social network, and different com-
munication networks must be overlapped because a person in
the social network is usually active in several communica-
tion networks with different identities, e.g., phone numbers
in phone networks [5,6], email addresses in email networks
[7], user IDs in blog or BBS networks [8,9], and so on.

PACS number(s): 89.75.Hc, 89.65.Ef, 89.70.Eg, 89.75.Kd

As is known to us, a concept can be expressed by differ-
ent words in different language networks, and a person may
be active in several communication networks with different
identities. Namely, direct interactions among complex net-
works may be caused by the various roles of the same indi-
vidual in different complex networks. So it will be of much
importance to reveal the same individual based on the data
collected from different complex networks, e.g., finding the
words expressing the same concept in different language net-
works or finding the identities denoting the same person in
different communication networks, etc. The solution of such
node matching problems cannot only help us understand the
coevolution rules among different complex networks so as to
build more appropriate models for them but also has its di-
rect applications, such as translating ancient writing, outlin-
ing the global social network by combining various commu-
nication networks, as is shown in Fig. 1(a), and so on.

The matching problems in different areas may have their
dedicated solving methods. For example, an ancient writing
researcher may use his knowledge about semantics to infer
the concept of those ancient words. However, in this paper,
we are only interested in and mainly focus on the following
question: does the structure of the networks under study pro-
vide extra information in solving the node matching prob-
lem, i.e., finding matched nodes representing the same indi-
vidual in different complex networks? The answer to this
question is positive with the fact that, in this world, when
two individuals have relationship in one complex network,
they will be more likely to “contact” each other in another
complex network if they both appear in that network. In
other words, an individual shows similar behavioral patterns
in different complex networks and such patterns can be
partly reflected by its local structural properties in corre-
sponding networks. For example, we investigated 24 QQ
(the most famous Instant Messenger in China) users and re-
vealed that, averagely speaking, they share telephone num-
bers of about 60% of their QQ friends, i.e., when two indi-
viduals communicate with each other in the QQ network,
they will contact each other in the telephone network with a

*Author to whom correspondence should be addressed; quite high probability close to 0.6. Such a result is also con-
crestxq@hotmail.com sistent with a public-opinion poll [18] that over 60% QQ
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FIG. 1. (Color online) (a) Nodes in different networks represent-
ing the same individual are named as matched nodes that are con-
nected by the brown (dark) dashed lines in this figure. The node
matching problem is to reveal all pairs of matched nodes in differ-
ent networks so as to outline the global social/language network. (b)
The overlapped projection of the local worlds of the two nodes vi1
and vjz- from different networks. v,-1 and v? have the common pro-
jection v;;, and each pair of revealed matched nodes [connected by
the brown (dark) dashed lines] around the nodes v l-l and v? also have
the common projection denoted by a filled node in the projective
plane, as a result, v;; has four neighbors. Then the similarity be-
tween the node v ll and the node v? can be calculated by the ratio of
the number of the filled neighbors to the number of neighbors of v;;,
ie., S(vil,vjz-)=2/4=0.5, in this figure. (c) The similarities between
nodes belonging to different networks (excluding the revealed
matched nodes) can be represented by a bipartite graph, where each
link has a weight denoting the similarity between its two end nodes.
Then the optimal matching problem for such a weighted bipartite
graph is to find a set of nonadjacent weighted links to maximize the
sum of their weights (similarities).

users are inclined to communicate with their acquaintances,
e.g., families, schoolmates, etc., in the QQ network. The
numbers of the total QQ friends as well as the numbers of the
QQ friends with telephone numbers for the 24 investigated
QQ users are plotted in Fig. 2.

In this paper, we think that an individual may behave
similarly if it appears in different complex networks. The
similarity between a pair of nodes belonging to different net-
works is calculated by their connections to several pairs of
preliminarily revealed matched nodes. Then the node match-
ing problem between two different networks is transferred to
a maximum weighted bipartite matching problem [19],
which can be solved by many well-known matching algo-
rithms in graph theory [20-22]. The method is applied to
different types of networks and some interesting results have
been obtained. For example, it is found that higher matching
precision can be derived on random networks with moderate
density of links and the matching results on small-world net-
works are always better than those on random or regular
networks. Moreover, it seems that better matching results
could be derived by selecting those nodes with larger degree
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FIG. 2. (Color online) The numbers of the total QQ friends as
well as the numbers of the QQ friends with telephone numbers for
the 24 investigated QQ users. It is revealed that the ratio of the
number of the QQ friends with telephone numbers to the number of
the total QQ friends for all the investigated 24 QQ users is equal to
1574/2702=0.58.

as the revealed matched nodes (the input of the algorithm),
which is especially remarkable for scale-free networks.

Recently, a large number of texts written in different lan-
guages have been described as complex language networks
[3,23]. It is found that many of them share several similar
properties, such as small world, scale-free, and so on. More-
over, Amancio et al. [24] adopted several network measure-
ments to evaluate the performance of different machine
translations and found that some measurements return simi-
lar results when a language network was translated to an-
other one. This finding suggests that the node matching al-
gorithm proposed in this paper can be used to automatically
translate texts provided some of their words have been trans-
lated correctly in the beginning.

The rest of the paper is organized as follows. In the next
section, the node matching problem is defined and a node
matching algorithm based on network structure is proposed.
Then in Sec. III, the algorithm is adopted to solve the node
matching problems for three different types of networks, i.e.,
the random networks, the small-world networks, and the
scale-free networks, where the influences of the network
structure on the matching results will be also carefully stud-
ied. Finally, the paper is concluded in Sec. IV.

II. NODE MATCHING ALGORITHM

Generally, a matching in a graph is a set of pairwise non-
adjacent links, that is, no two links in the set share a common
node [19]. Matching problems are often concerned with bi-
partite graphs, especially with weighted bipartite graphs
where each link has an associated value. A maximum
weighted bipartite matching is defined as a perfect matching
(every node in the graph is incident to exactly one link of the
matching) where the sum of the values of the links on the
matching have a maximal value. It should be noted that if the
graph is not completely bipartite, missing links are inserted
with value of zero. Finding such a matching is known as the
assignment problem [25].
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The maximum weighted bipartite matching problem can
be solved by the Bellman-Ford (BF) algorithm [20] with the
time complexity O(N?) if there are N nodes in the focused
graph. When the link weights are non-negative, the BF algo-
rithm can be replaced by the Dijkstra algorithm with a lower
time complexity O(N?). Besides, Kuhn developed a combi-
natorial optimization algorithm to solve the same problem.
He named it Hungarian algorithm in honor of the work of
Konig and Egervdry on which it is based [21]. A few years
later, Munkres reviewed the algorithm and observed that its
complexity is strongly polynomial. Since then the algorithm
has been known remarkably also as the Kuhn-Munkres (KM)
algorithm [22]. Similarly, the time complexity of the original
KM algorithm was O(N%), and Edmonds and Karp, and in-
dependently Tomizawa noticed that it could be also modified
to achieve an O(N?) running time.

Here we focus our work on node matching between dif-
ferent networks, which has received little attention in the
literature. The problem can be transferred to a maximum
weighted bipartite matching problem after calculating the
similarities between nodes belonging to two different target
networks, and thus can be solved by those well-known
matching algorithms. Naturally, in a network, a node can be
characterized by its topological properties [10], e.g., degree,
clustering coefficient, betweenness, and so on. Therefore, it
seems possible to reconstruct some types of networks so as
to match nodes between them only from that topological
information provided that a comprehensive set of such mea-
surements is adopted [26]. However, recent research shows
that real-world complex networks themselves are always
highly symmetric [27], i.e., there are always lots of nodes
sharing the same neighbors in a network, which will even
prevent us from distinguishing them in one network only by
considering their topological properties, not to mention
matching them between different complex networks. More-
over, the focused complex networks are always just over-
lapped but not completely identical [18], i.e., the matched
nodes may have a little difference in their local structural
properties. Therefore, in most cases, it is unpractical to
match nodes between different networks without considering
other a priori knowledge.

Fortunately, there are always a part of matched nodes hav-
ing been revealed in real-world complex networks, e.g., in
communication networks, individuals may leave their email
addresses or phone numbers when they register blog or BBS
accounts. Moreover, still take QQ, for example: like MSN,
QQ has its own email system, i.e., each QQ account is auto-
matically assigned with a unique QQ email address, and the
same public-opinion poll [18] shows that about 16% QQ
users take the QQ email as their preferred email facility,
which suggests that at least 16% pairs of matched nodes
between the QQ network and the email network have been
already revealed.

In the present paper, the revealed matched nodes as a
priori knowledge as well as the network topological infor-
mation will be adopted to design the node matching algo-
rithm. The node matching problem then can be described as
node matching problem between two different networks: two
networks under study are denoted by G,;=(V,,E,) and G,
=(V,,E,), where Viz{v"l,vé,...,vj'\,i} and E; represent the
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node set and the link set of network i (i=1,2), respectively.
Without loss of generality, the M pairs of matched nodes
v }f—wf in these two different networks are defined as
{vi.vh,...,v)} CV; (i=1,2) with M =min{N,,N,}, while P,
(P,<M) pairs of them have been already revealed, named as
revealed matched nodes, and denoted by {v},v5, ... ,v}r} cv;
(i=1,2). Then the problem is can we design a method to find
the other M — P, pairs of matched nodes in these two distinct
networks by using the information of the network structures
of G, and G, and the revealed matched nodes?

A feasible node matching algorithm is presented by the
following three steps:

(i) Similarity calculation: the similarity between two
nodes belonging to different networks can be measured by
the number of pairs of revealed matched nodes around them,
e.g., the number of common friends they contact with in
different communication networks, where a common friend
is denoted by a pair of revealed matched nodes in corre-
sponding communication networks. Then the similarity be-
tween nodes v; and vf can be calculated by Eq. (1),

1.2
nM(U,‘ av]‘)

I 2 12
n(v;) +np(v7) = ny(v;,v3)’

S(v,-l,vf)=

(1)

where nM(v},v?) denotes the number of pairs of revealed
matched nodes (v;,v7) where v} and v7 are mutually con-
nected, i.e., vi1 is connected to v}( and v? is connected to v,%,
in the corresponding networks, and 7, (v;) [or nL(sz-)] repre-
sents the number of links connected to the node v ll (or vjz-) in
the network G, (or G,). Equation (1) guarantees that the
similarity between two nodes belonging to the different net-
works has the normalized value in [0, 1], and can be visually
illustrated by the overlapped projection of the local worlds of
the two nodes v,-l and vf, as is shown in Fig. 1(b). In this
figure, v} and v? have the common projection v;j, and each
pair of revealed matched nodes [connected by the brown
(dark) dashed links] around the nodes v ,1 and v? also have the
common projection denoted by a filled node in the projective
plane. As a result, v;; has four neighbors. Then the similarity
between the node v and the node v? can be calculated by the
ratio of the number of the filled neighbors to the number of
neighbors of vy, i.e., S(v;,v7)=2/4=0.5.

(ii) Node matching: the similarities between nodes be-
longing to different networks (excluding the revealed
matched nodes) can be represented by a bipartite graph G,
=(U,,U,,W), where Uiz{v;,rﬂ,v’,,rﬂ,...,vj\,l_} (i=1,2), and
W denotes the set of links weighted by the similarities S
between these two groups of nodes. Then the node matching
problem between G| and G, can be transferred to a maxi-
mum matching problem [19] for the bipartite graph G,, i.e.,
under the assumption N;=N,, finding a set of nonadjacent
weighted links {w;,wy, ..., wy _p} to maximize the sum of
their weights =¥1~"75, as is shown in Fig. 1(c). This maxi-
mum weighted bipartite matching problem can be solved by
the KM algorithm [22]. It should be noted that, although the
KM algorithm was developed for the case N;=N,, it could
be also feasible in the case Ny <N, through factitiously add-
ing N,—N, isolated nodes in G;. Then N,—P, pairs of
matched nodes can be derived by the KM algorithm, where
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N,— N, pairs of them containing factitious nodes are rejected
automatically while the other N|—P, pairs as well as their
similarities are reserved.

(iii) Matched pairs selection: if the value of M is known a
priori, the only thing we need to do is to sort Ny — P, pairs of
matched nodes by their attached similarities, then select the
top M — P, pairs with larger similarities as the final pairs of
matched nodes. However, the value of M may be unknown
in real-world complex networks. In such a situation, a thresh-
old #e[0,1) must be provided and those pairs of matched
nodes with similarities larger than 6 then are selected as the
final pairs of matched nodes. Statistically, a proper value of
the threshold 6 should satisfy Eq. (2),

1 1
— > si=—2> 8(},vd), (2)
M=o P,

where M4 denotes the number of selected pairs of matched
nodes with similarities larger than 6.

III. MATCHING EXPERIMENTS

In order to test the node matching algorithm proposed in
the last section, two interactional complex networks with M
pairs of matched nodes should be created at first. Here, for
convenience, the parameters are set to be N;=N,=M=N.
Generally, there are two ways to create a pair of interactional
networks, as is shown in Figs. 3(a) and 3(b), respectively,
both of which may work in reality. One way is that the pair
of interactional networks G; and G, are evolved from a com-
mon original network; in other words, they are derived from
the same network (obtained by some model) through random
rewiring. The other ways are introduced as follows:

(i) Networks initialization: two networks G; and G, with
N nodes, respectively, are created by the same rule, where all
the nodes are randomly matched, i.e., N pairs of randomly
matched nodes v; +»v; are provided.

(ii) Interaction: if vi1 (or vi2) and vjl- (or vf) is connected in
G, (or G,) while vf (or v}) and vf (orv ;-) is not connected in
G, (or G,), then connect vl.2 (orv il) and'vjz. (orv }) with prob-
ability 7, (or 7,).

In this paper, the second way is adopted to create pairs of
tested interactional networks. Then P, (P,<N) pairs of
matched nodes are selected as the revealed matched nodes.
So there will be totally N— P, pairs of nodes needed to be
further matched. If P, (P.<N-P,) pairs of them are re-
vealed correctly, then the matching precision ¢ of the algo-
rithm can be calculated by Eq. (3),

P

¢=N——CP¢' 3)

A. Node matching between random networks

Considering that G, and G, are all P. Erdés and A. Rényi
(ER) random networks [28] and 7,=17,=7, then the three
parameters including the connection probability p of each
random network, the interactional degree 7, and the sample
ratio y=P,/N, i.e., the proportion of the randomly selected
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FIG. 3. (Color online) Two ways to create a pair of interactional
networks. (a) The pair of interactional networks G; and G, are
derived from the same original network (obtained by some model)
through random rewiring. The corresponding nodes are matched
[connected by brown (dark) dashed lines]. (b) In the beginning, two
networks G; and G, are obtained by the same model, where all the
nodes are randomly matched [connected by brown (dark) dashed
lines]. Then the pair of interactional networks G, and G, are de-
rived by interacting with each other, i.e., two nonlinked nodes in the
network G, are connected by a green (dark) line with probability 7,
if their corresponding matched nodes in G, are linked while two
nonlinked nodes in G, are connected by a red (gray) line with
probability #; if their corresponding matched nodes in G; are
linked. 7, and 7, are named as interactional degree. In this paper,
the second way is adopted to create pairs of tested interactional
networks.

revealed matched nodes, will influence the final matching
precision ¢. Generally, the matching precision ¢ will in-
crease monotonically as the interactional degree 7 or the
sample ratio 7y increases while the influence of the connec-
tion probability p on the matching precision is more compli-
cated.

When p=0, all of the nodes in G; and G, are isolated, that
is, following Eq. (1), the similarity S(vzi1 ,vjz-)zO must be sat-

isfied for each pair of nodes v} and v ;> which must further
result in a zero matching precision. As the densities (defined
by the connection probability p) of the networks increase, a
fixed number of randomly selected revealed matched nodes
can provide more detailed structural information for other
nodes in the networks. As a result, the matching precision ¢
will be improved. However, too many links (i.e., p— 1) may
cause random networks getting more symmetric, which, on
the contrary, will decrease the matching precision ¢. For
instance, when p=1, each node in G| or G, is connected to
all pairs of revealed matched nodes, that is, following Eq.
(1), each pair of nodes v ,l and vjz- will have the same similar-
ity S(v},v?):Pr/ (N—1), which will also result in a zero
matching precision.

In this experiment, the number of nodes in each random
network is set to be N=100, and the relationships between
the matching precision ¢ and the connection probability p
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FIG. 4. (Color online) The relationships between the matching precision ¢ and the connection probability p for various sample ratios
v=0.3,0.5,0.7,0.9 and different interactional degrees 7=0.2,0.5,0.8,1. For each parameter set {p, 77, ¥}, the experiment is implemented on
100 different pairs of random networks, each of which has N=100 nodes.

for various sample ratios y=0.3,0.5,0.7,0.9 and different
interactional degrees 7=0.2,0.5,0.8,1 are shown in Figs.
4(a)-4(d). Tt is found that, as long as the interactional degree
7> 0, the node matching algorithm will take effect although
the matching precision ¢ is quite low when the value of 7 is
much smaller. For example, if =0.2, the matching precision
¢ is always lower than 0.5 even when there is a very high
proportion of the revealed matched nodes, i.e., y=0.9, as is
shown in Fig. 4(a). Moreover, as is expected, the polarization
of the connection probability, i.e., p—0 or p— 1, will also
result in a quite low matching precision, as is shown in Figs.
4(a)-4(d).

Furthermore, suppose the maximal matching precision is
obtained when p=p,,,.(7,y) for each pair of 7 and 1y, as is
shown in Figs. 4(a)-4(d), it could be found that the inequal-
ity 0<p,(7,7) <0.3 is always satisfied. More interest-
ingly, pa(7,7) gets larger as the interactional degree 7 in-
creases, i.e., the peaks of the curves shift rightward in Fig. 4
from (a) to (d). In order to provide a clearer result, the rela-
tionship between p,,,, and # for a constant sample ratio 7y
=0.3 is shown in Fig. 5(a). Figure 5(b) shows that, when 7
=0.2 [the much larger standard deviation makes the value of
Pmax at 7=0.1 unreliable, as a result, it is excluded in Fig.
5(b)], pnax increases linearly as 7 increases, i.€., Pux
=0.117+0.18, with a relatively small fitting error. In parallel
to this, the relationship between p,,,, and y for a constant
interactional degree 7=0.5 is shown in Fig. 6(a). The extra
small slope of the red (dark) fitted line in this figure suggests
that p,,,. is almost independent of the sample ratio y.

B. Node matching between small-world networks

As more and more real-world complex networks are col-
lected and analyzed, it is widely believed that real-world
networks are always far different from ER random networks.
In fact, it is found that many of those real-world complex
networks not only have small average shortest path length as
ER random networks but also are highly clustered as regular
networks. In order to explain this phenomenon, Watts and
Strogatz (WS) proposed a simple small-world network
model by introducing randomness into a regular network
through a rewiring process [1]. In the WS model, the tradeoff
between an ER random network and a regular network can
be adjusted by the rewiring probability p, and for some in-
termediate values of p, the network presents small-world
property, i.e., the network has a small average shortest path
length, and at the same time, is highly clustered.

Obviously, in the WS model, the rewiring probability p
plays an important role in determining the structure of the
network. Thereby, it is always very interesting to investigate
the influence of the rewiring probability p on the network
dynamic properties. For example, Walsh [29] found that it is
always more difficult (time consuming) to search in a small-
world network (0<p<1) than in a regular network (p=0)
or a random network (p=1). In this section, we will study
the influence of the rewiring probability p on the node
matching problem, and try to reveal if the higher matching
precision can be obtained on small-world networks than on
regular networks or random networks.

Because the randomly node matching as well as the inter-
action between the different regular networks has the similar

026103-5



QI XUAN AND TIE-JUN WU

0 012 014 . 0‘.6 0‘.8 1‘ 1.2
(a) Interactional Degree n

PHYSICAL REVIEW E 80, 026103 (2009)

0.5

P, =011 +0.18

Residual
=) oo

—-0.05 - - -
0.1 0.3 0.5 0.7 0.9 1.1

Interactional Degree n

—

C

-~

FIG. 5. (Color online) (a) The right value of the connection probability p,,.,. Where the highest matching precision is derived (if the
highest matching precision is derived at several values of p, one of them is randomly selected as p,,,.), as a function of the interactional
degree 77 when the sample ratio is fixed to y=0.3. For each parameter set {p, 77}, the experiment is implemented on 100 different pairs of
random networks, each of which has N=100 nodes. It is shown that p,,,, has a much larger standard deviation when 7=0.1. (b) When y
=0.3 and 7=0.2, there seems to be a linear relationship between p,,, and 7, i.e., p,,x=0.117+0.18, fitted by the red (dark) line with a
relatively small mean squared error (MSE) equal to 2.54 X 107, (c) The corresponding residual plot of the fit.

effect as the rewiring process on creating small-world net-
works, in order to clearly present the influence of the rewir-
ing probability p on the matching precision ¢, the networks
G, and G, are set to be totally the same, i.e., they are just
two copies of the network G derived by the WS model with
a rewiring probability p, and a pair of copies of the same
node in G is considered to be a pair of matched nodes.
Namely, if v} and v} is connected in Gy, vi2 and vf must be
also connected in G,, and vice versa.

Each small-world network in the experiment has N=100
nodes as well as an average degree (k)= 10, and the relation-
ships between the matching precision and the rewiring prob-
ability p are depicted in Figs. 7(a)-7(d) for various sample
ratios y=0.2,0.3,0.4,0.5, respectively. Generally, much
lower matching precision is derived by KM algorithm on
regular networks (p=0) than on small-world networks (0

0.4
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3
£ 0.2f ]
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FIG. 6. (Color online) (a) The right value of the connection
probability p,,..» where the highest matching precision is derived (if
the highest matching precision is derived at several values of p, one
of them is randomly selected as p,,,,), as a function of the sample
ratio y when the interactional degree is fixed to 7#=0.5. For each
parameter set {p, ¥}, the experiment is implemented on 100 differ-
ent pairs of random networks, each of which has N=100 nodes. The
extra small slope of the red (dark) fitted line (with the MSE equal to
7.86 X 1075) suggests that p,,,, almost keeps constant when vy
changes from 0.1 to 0.9. (b) The corresponding residual plot of the
fit.

<p<1) or random networks (p=1). Moreover, when 7y
=0.2 and y=0.3, as is shown in Figs. 7(a) and 7(b), the
matching precision climbs rapidly at the beginning as the
randomness increases and gets to its peak at about p=0.3,
then it drops slowly until p=1. This finding reveals that, at
proper values of the sample ratio vy, the matching results on
small-world networks are indeed a little better than those on
regular networks or random networks. However, in this ex-
periment, for each rewiring probability p €[0,1], Egs. (4)
and (5) must be satisfied,

y—>0=>¢—>0, (4)

vy—=1l=¢—1. (5)

As a result, the slight superiority of the small-world net-
works over the random networks on the node matching prob-
lem will soon disappear as the sample ratio 7y further de-
creases or increases, which is partially verified by Figs. 7(c)
and 7(d) for y=0.4 and y=0.5, respectively.

C. Node matching between scale-free networks

Besides the small-world property, many real-world com-
plex networks also share a heterogeneous structure charac-
terized by a power-law degree distribution. In these scale-
free networks, there are always a few hub nodes obtaining
most links while lots of other nodes have very few links. The
first scale-free network model is proposed by Barabdsi and
Albert (BA) [2] with the following modeling process: start
with a small number m,, of nodes connected with each other,
add a new node at every time step, and connect it to m (m
=m,) different nodes that are selected with a probability
linearly proportional to their degrees, then, after 7' time steps,
a scale-free network with N=my+T nodes is created.

Generally, the hub nodes play much more important roles
in the dynamics of scale-free networks than other nodes. For
instance, as is revealed by Albert et al. [30], once those hub
nodes are attacked, the average shortest path length of a
scale-free network will increase quickly; as a result, the com-
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FIG. 7. (Color online) The relationships between the matching precision ¢ and the rewiring probability p for small-world networks under
various sample ratios y=0.2,0.3,0.4,0.5. For each parameter set {p, ¥}, the experiment is implemented on 1000 different pairs of small-
world networks, each of which has N=100 nodes and an average degree (k)=10. The red (dark) dashed lines denote the matching precision

of the algorithm on the random networks when p=1.

munication efficiency of the network will be largely weak-
ened. For the node matching problem between scale-free net-
works, the hub nodes also have their outstanding status.
Based on the interactional model proposed in this paper, de-
noting the degree of v; by di1 and the degree of vjz- by djz., if
they are randomly selected as a pair of matched nodes, then,
averagely speaking, there are dl.ldjz./ N other pairs of matched
nodes around them before the interaction. Moreover, after
the interaction, the degree of v} and that of vlz» can be calcu-
lated by Egs. (6) and (7), respectively, '

1
Teasa(1 % (6)
i i j N /iR
2
?—d2+d1<l—ﬁ) (7)
j =4 i N -

Also, the number of pairs of other matched nodes around the
matched nodes v; and vjz- after the interaction can be calcu-
lated by Eq. (8),

d| d; dld;
Fij:d?<l—ﬁ>172+dil<l—7\§)m+ v ®

Equations (6)—(8) can be simplified to Egs. (9)—-(11), respec-
tively, because real-world complex networks always have a
very huge number of nodes as well as a relatively small
average degree,

d =~ d'+ nyd’, ©)
&=~ &+ nd, (10)
gl 2
Fyj= md; + mod;. (11)
Then Eq. (12) can be derived,
=)~ (1= 7))~
7 772)d! . 7( nl)df’ <1,
F.o~ 1= L=,
R B B b
Edi +Edjs mm=1.
(12)

Following the formulation of F ijs statistically, there are more
pairs of unrevealed matched nodes around a pair of revealed
matched nodes v} and v? with larger Fi, i.e., in order to
improve the final matching precision ¢, a natural strategy is
to sort all the pairs of matched nodes by F; in descending
order, then selecting the top P, pairs of matched nodes as the
revealed matched nodes. However, this strategy seems un-
practical because, in reality, it is supposed that the matched
nodes are unknown beforehand. Fortunately, Eq. (12) indi-
cates a substitute way, i.e., selecting nodes with larger degree
in one target network, revealing their matched nodes in the
other target network, then these pairs of matched nodes are
set to the revealed matched nodes of the algorithm. Particu-
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FIG. 8. (Color online) The relationships between the matching precision ¢ and the sample ratio y by adopting the three different revealed
matched nodes selection rules, i.e., R, LDP1, and LDP2, for scale-free networks with different parameters. (a) With parameters N=100,
m=my=2. (b) With parameters N=100, m=my=3. (c) With parameters N=100, m=my=4. (d) With parameters N=100, m=my=35. For each
parameter set {y,m,m} and each selection rule, the experiment is implemented on 100 different pairs of scale-free networks. It is shown
that, generally, better matching results can be derived by selecting revealed matched nodes following the degree based rules LDP1 and LDP2
than following the random selection rule R. Moreover, in most cases, LDP1 is prior to LDP2 when 7, > #, in this experiment.

larly, three feasible revealed matched node selection rules are
proposed as follows:

(i) Random (R): P, nodes in G, (or G,) are randomly
selected, and these nodes as well as their matched nodes in
G, (or G,) are selected as the revealed matched nodes.

(ii) Large degree priority in G; (LDP1): the nodes in the
network G, are sorted by their degree in descending order,
and their top P, as well as their matched nodes in G, are
selected as the revealed matched nodes.

(iii) Large degree priority in G, (LDP2): the nodes in the
network G, are sorted by their degree in descending order,
and their top P, as well as their matched nodes in G are
selected as the revealed matched nodes.

Equation (12) suggests that, based on the interactional
model proposed in this paper, statistically, better matching
results can be always derived by selecting revealed matched
nodes following the degree based rules LDP1 and LDP2 than
following the random selection rule R. Moreover, LDP1
would be prior to LDP2 when 7, > 7,, and vice versa. It
should be noted that LDP1 (or LDP2) still takes effect even
when 7,=0 (or 7,=0) as long as 7, + 7, >0 just because, in
such a situation, Eq. (13) [or Eq. (14)] must be satisfied,

Fij“”izd?:dN}_d;’ (13)

Fy=~md;=d; - d;. (14)

In this experiment, the two networks G; and G, are both
created by the BA model with N=100 nodes. In order to
reveal the different matching results caused by adopting the
different selection rules LDP1 and LDP2, the interaction pa-
rameters 77; and 7, are set to be different, i.e., 7;=0.9 and
7,=0.1. Then, the relationships between the matching preci-
sion ¢ and the sample ratio vy for various selection rules and
different values of m=2,3,4,5 are shown in Figs. 8(a)-8(d).
It is clearly shown that, in most cases, as is expected, the best
matching results can be derived by adopting LDPI1, while
both the degree based rules LDP1 and LDP2 are prior to the
random selection rule R. That is, if possible, revealing those
small numbers of hub nodes in one target network as well as
their matched nodes in the other target network beforehand
as the a priori knowledge will indeed increase the matching
precision of the node matching algorithm between scale-free
networks.

IV. CONCLUSIONS

Real-world complex networks are considered to be inter-
acted with each other when an individual appears in these
networks with different identities. It is very interesting for
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network researchers to distinguish these identities of the
same individual through their topological information, which
is especially significant in sociology, linguistics, and biology.
However, such node matching problem between different
complex networks receives relatively little attention in the
literature although matching itself is well defined in graph
theory and was carefully studied a hundred years ago.

In this paper, we designed a method to calculate the simi-
larities between nodes of different networks through their
connections to several pairs of preliminarily revealed
matched nodes and transferred the node matching problem
between two different networks to a maximum weighted bi-
partite matching problem that can be solved by many well-
known matching algorithms in the graph theory. Through
solving node matching problems on different types of net-
works by our algorithm, we found that the structure of the
networks may largely influence the final matching results.
For instance, it seems that hub nodes play dominant roles in
the node matching algorithm, i.e., better matching results
could be always derived by selecting nodes with large de-
grees as revealed matched nodes. Recent research on lan-
guage networks shows that some topological properties did

PHYSICAL REVIEW E 80, 026103 (2009)

not change much when a language network was translated to
another one. This finding suggests that the node matching
algorithm proposed in this paper can be used to automati-
cally translate texts provided some of their words have been
translated correctly in the beginning.

However, the node matching algorithm proposed in this
paper has computational complexity O(N?), which hinders
its applications in real-world networks with a quite large
number of nodes. Hence, it will be of much importance to
design a more practical node matching algorithm with a
lower computational complexity in the future.
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